
INTEGRATING DIS AND
SIMNET INTO HLA WITH A

GATEWAY

Andy Cox, Douglas D. Wood, Mikel D. Petty,
and Kenneth A. Juge

Institute for Simulation and Training
3280 Progress Drive
Orlando, FL 32826

KEYWORDS
HLA, ProtoFederation, Legacy Integration, Gateway,

Computer Generated Forces

ABSTRACT
The High Level Architecture (HLA) is a project
to develop a simulation infrastructure that will
promote interoperability between simulations.
The Defense Modeling and Simulation Office
(DMSO) commissioned several experimental
applications of HLA in 1996 to test and refine
the HLA concept. One of those experiments was
conducted by the Platform Proto-Federation
(PPF), a group of virtual real-time (i.e., DIS-
type) simulations assembled to test HLA in that
domain. The PPF consisted of four member
programs: BDS-D, BFTT, CCTT, and
JTCTS. The BDS-D federate was a crewed
SIMNET M1 simulator. BDS-D connected the
M1 simulator to the HLA network using an
HLA Gateway, developed at IST. The HLA
Gateway performs protocol translation,
converting SIMNET PDUs into RTI service
invocations, and vice versa. The Gateway
approach was chosen for BDS-D to test the
feasibility of integrating legacy simulations into
HLA in that manner. In a parallel effort, IST
added DIS functionality to the Gateway,
allowing it to perform the same translation for
DIS. This paper will describe the design and
implementation of the IST HLA Gateway, a
description of the Gateway’s Simulation Object
Model (SOM), performance of the Gateway in
PPF experiments, and analysis of the feasibility
of the Gateway as a means of legacy system
integration.

1.0 INTRODUCTION
The Defense Modeling and Simulation Office
(DMSO) is supporting several experimental
applications in 1996 to test and refine the HLA
concept. One of those experiments is being
conducted by the Platform Proto-Federation
(PPF), a group of virtual real-time (i.e., DIS-
type) simulations formed to test the applicability
of HLA to that particular simulation category.
One member of the PPF is the US Army
Simulation, Training and Instrumentation
Command's Battlefield Distributed Simulation-
Developmental (BDS-D) program. The Institute
for Simulation and Training (IST) and
STRICOM have chosen to connect the BDS-D
M1 tank simulator to the larger HLA PPF via an
interface node. The interface will convert HLA
Runtime Infrastructure (RTI) services into
SIMNET PDUs and forward them to the M1
Simulator. Similarly, SIMNET PDUs are
translated into RTI service calls. This device is
referred to as the IST HLA Gateway. IST and
STRICOM have chosen to use the gateway
approach to HLA integration so as to test its
feasibility. This provides a mechanism for
legacy applications, such as the BDS-D M1
crewed simulator, to utilize RTI services without
requiring any modifications to existing software.
If viable, the interface will enable the integration
of the US Army's large inventory of existing
SIMNET equipment into HLA exercises.

2.0 IST HLA GATEWAY
Developed on a Silicon Graphics Indy using Irix
5.3, the HLA Gateway translates from SIMNET
6.6.1 or DIS 2.0.3 to HLA and vice versa.
Incoming PDUs are converted to attribute
updates, with an incoming PDU’s fields
compared to attribute values for the object
retained in the Gateway, so that only changed
attributes are updated. Incoming attribute
reflections from the RTI are converted to PDUs,
with the object’s stored attribute values used to
fill in attributes needed for the PDU that are not
provided in the reflection. Dead Reckoning
models of remote objects are maintained in the
Gateway and used to generate heartbeat PDUs
when the attribute reflection interarrival time
exceeds the protocol’s time-out limit. The
Gateway performs data transformation (e.g.
coordinate conversion) to convert the protocols’
PDU fields into the attributes. Interactions are
also converted into DIS/SIMNET PDUs, again
performing any needed data conversion in the
process.

2.1 Capabilities
The Gateway used to link the SIMNET M1
simulator to the HLA network is in fact a multi-
functional HLA node with a range of useful
capabilities. In short, they are:

1. HLA-SIMNET protocol translation
2. HLA-DIS protocol translation
3. HLA Log and Playback
4. Computer Generated Forces
5. Run-time Object Monitor

All of these capabilities were designed into a
single software module because of the significant
amount of shared code and functionality between
them. Gateway design is discussed in greater
detail in section 2.2.

2.1.1 Protocol Translation
Currently the HLA Gateway translates the most
commonly used PDU types in each protocol:
Vehicle Appearance, Fire, Indirect Fire, Impact,
and Collision for SIMNET and Entity State,
Fire, Detonation, and Collision for DIS. These
were sufficient to support the M1 simulator’s
role as prescribed in the PPF experiment plan.
The HLA Gateway’s publications and
subscriptions, which are set in a configuration
file and can be changed at run-time, are based on
the PPF FOM, which is approximately a subset
of DIS. Presently, the HLA Gateway does not
handle HLA ownership transfer functions.
Additional RTI services such as query, delete,
and time management will be considered to
increase HLA functionality. Several other
enhancements are anticipated, including
upgrading the Gateway’s HLA communication
to a DIS “Super-FOM” (a statement of the DIS
standard in OMT format), adding translation for
additional SIMNET and DIS PDUs, and
investigating the DIS Data Dictionary/Protocol
Catalog to facilitate standardization of class
names, data types, and enumerations.

2.1.2. HLA Log and Playback
The HLA Gateway can log incoming HLA
attribute reflections and interactions to data files
in both text and binary form. The text log files
are useful for analysis and debugging. The
binary log files can be played back by the
Gateway; during a playback, the Gateway sends
the sequence of attribute reflections and
interactions recorded in the log file. Replay is
based on receive time, though a replay based on
send time is being considered. The log and
playback can be controlled by “Start”, “Pause”,
“Resume”, or “Stop” commands.

The Log function works by subscription, i.e., it
will log everything that the HLA Gateway is
subscribed to. There are, of course, maximum
recording rates and amounts. However, the
logging capabilities are not constrained by
current HLA implementations. Some HLA
events are missed with a subscription-based
approach to logging (e.g. Federation Joins), but
this capability has nevertheless been very useful
for experimentation and debugging.

2.1.3 Computer Generated Forces
Integrated into the HLA Gateway is a UNIX
version of IST’s Computer Generated Forces
system, which has been developed and extended
since 1990. The Gateway’s CGF component
can generate and control entities in a SIMNET,
DIS, or HLA exercise. While running as an
HLA-based CGF, the Gateway communicates
directly in HLA, i.e., no DIS or SIMNET PDUs
are generated. The CGF component provides a
Plan View Display, showing an overhead map
view of the exercise. The Gateway’s CGF was a
valuable tool during PPF testing as a means to
quickly instantiate objects in a trial.

The CGF system is limited to about 40 locally
owned objects and is operated by a command
interface. It currently operates in a real-time
independent time advance mode and does not
accommodate any of the HLA time management
services.

2.1.4 Run-time Object Monitor
The Run-time Object Monitor is a run-time
command driven facility that allows the operator
to monitor the status of HLA objects during the
execution of an HLA exercise. In particular, the
attributes of any selected object can be displayed,
or a summary of all objects can be generated.

2.2 Gateway Design
The BDS-D/HLA Gateway is an extension of
IST’s Computer Generated Forces (CGF)
Testbed (Smith, 1992). The Testbed provided a
SIMNET and DIS compliant framework for
coordinate conversions, dead reckoning, visual
displays, and a protocol-independent simulation
core. Gateway functionality entailed the addition
of an RTI interface and set of services in
accordance with the HLA Specification.
2.2.1 Component Services Framework
The Gateway’s RTI interface was developed
using TASC’s Component Services Framework
(CSF), a set of middleware that encapsulates and
extends RTI services in C++ classes (Bachinsky,
1996). To support translation between
networks, two network interfaces are supported

within the gateway. The use of separate
networks has several benefits, including reduced
processing at the simulation hosts and a lower
average utilization on each network. A
byproduct of the gateway’s translation is that the
entire HLA exercise may be observed remotely
on the SIMNET network by other passive
monitoring devices such as Plan View or Stealth
visual displays. A diagram of the gateway and
the overall PPF network is shown in Figure 1.

Other PPF
Federates

Plan View
 Display

Stealth
M1

Simulator
(Crewed)

HLA Network

SIMNET Network

BDS-D Federate

Local RTI

CSF “Common Software”

Gateway/RTI Interface

Gateway
•Translation logic
•Dead reckoning
•Data distribution

SIMNET Protocol Stack
IST HLA Gateway

Figure 1. IST HLA Gateway and PPF Network

The Gateway comprises several “manager”
processes, each providing a specific type of
service. The major processes used in the
Gateway are listed in Table 1. The Protocol
Manager was the only existing manager
significantly effected by the addition of the
gateway functionality, other than additional
console input processed by the Console
Manager. The Protocol Manager provides an
interface between the internal application and the
external protocols. The Protocol Manager
receives incoming data from the simulation
network and performs any necessary data
transformations to create an internal
representation. Similarly, outgoing data from the
application is transformed into the appropriate
simulation protocol format. Incoming data is
forwarded to the Distribution Manager via the
Executive message queue for further processing
(i.e., dead reckoning model update). An
additional communication path was added to the
Protocol Manager to pass the data to the
Gateway Manager via a direct function call.
Output to the legacy simulation network via
direct function calls already existed.
Similar to the Protocol Manager, the Gateway
Manager provides an interface between the
internal application and the HLA RTI. The
Gateway Manager receives incoming data from an
RTI Interface (see next section) and performs data
transformations. For interactions, there is
practically no difference; an HLA RTI interaction
is always a complete set of data. In contrast,
HLA RTI object updates or reflections are
mostly partial data sets containing only changed
data, excluding the first update or instantiation
where a complete update is expected. Upon
receiving an object update from the RTI Interface,
the Gateway Manager gets a current copy of the
entity’s dead reckoned model from the
Distribution Manager or creates one if this is the
first update. The partial updates are applied to
this state information which is then forwarded
back to the Distribution Manager and
simultaneously passed to the Protocol Manager
for distribution to the legacy simulation network.
Interactions are similarly distributed to both of
these Managers.

Table 1. Gateway Manager Processes

The Gateway Manager accepts direct function
calls to send application data to the HLA RTI
via the RTI Interface, first performing any
appropriate data transformations. A state
diagram depicting the communication between
the Protocol Manager, Distribution Manager, and
Gateway Manager is given in Figure 2. The
solid lines are messages or incoming data and
the dotted lines are direct function calls.

The majority of the Gateway’s modifications
were related to the exchange of data between the
legacy simulation protocol and the HLA RTI.
However, the Gateway must provide additional
functionality to meet the HLA Interface
Specification requirements as implemented by
the HLA RTI. The HLA RTI requires an
application or federate to join a federation and to
publish and subscribe to object and interaction
classes. The federate must also be able to

Manager Function

Console Manager Process console input

Display Manager PVD/3D Display

Distribution Manager Distribute information
from the network

Executive Message Scheduler

Gateway Manager Provide RTI and
Gateway services

Initialization Manager Initialization and
removal of entities

Protocol Manager Provide protocol
specific interfaces

Radio Manager DIS Radio Handler

Simulation Manager DIS Simulation
Management services

Distribution
Manager

Protocol
Manager

Gateway
Manager

SIMNET HLA

Figure 2. Gateway Message Flow

respond to calls invoked by the HLA RTI on the
federate (i.e., incoming HLA data). The
implementation of these functions and the
transformation of application data into HLA RTI
calls is described below.

2.2.2 RTI Interface
The Gateway’s RTI Interface is implemented
through the four simple API functions shown in
Table 2.

Table 2. Gateway RTI Services

The start function initializes the RTI Interface
components and using these components it
invokes the RTI services to create a federation
(optional), join a federation, and subscribe and
publish to object and interaction classes. The
RTI Interface components are parameterized via a
configuration file that contains parameters for
naming the federation, specifying appropriate
host machines (executive and ambassador),
selecting subscription and publication classes,
and determining whether to create a federation or
join an existing one. As was mentioned above,
the RTI Interface was developed on top of the
CSF. The CSF components that are created
during initialization are given in Table 3.

The RTI Interface defines a publisher and a
subscriber component to support the use of the
CSF managers. The publisher and subscriber
components define what object and interactions
classes are published and subscribed (i.e., classes
of data to be output and received). They are also
used to support the transformation of data from
the application into calls on the CSF Managers
and vice versa. These two components are
initialized and used for publication and
subscription when start is called.

Table 3. CSF Managers

The RTI Interface send function accepts the full
description of an entity state or entity interaction
and transforms the data into object attributes and
interaction parameters for delivery to the CSF
Object Manager (OM). Since interaction
parameters are not named, all interaction
attributes are required and their positioned order
is fixed. In contrast, object attribute updates are
named and should only be sent when a change
has occurred. Because the CSF OM determines
when an attribute has changed, the RTI Interface
delivers the complete set of entity state
information to the CSF OM. The CSF OM only
sends out those attributes that have changed. The
design of the CSF OM also supports filtering
attribute updates for those attributes not activated
by the RTI (i.e., has no subscribers); however,
this RTI capability has not been implemented.

The RTI Interface receive function first invokes
the CSF Process Manager (PM) to process the
RTI event queue (e.g., object reflection and
interaction generation) and fill the CSF Interest
Manager’s (IM) object attribute and interaction
database. Queries are then invoked on the CSF
IM’s database to extract the updated attributes
and interactions. A message is constructed for
each set of object attributes and for each
interaction. The messages are sent to the
Gateway Manager for data transformation and
delivery to the Protocol Manager and the
Distribution Manager. The database is then
cleared for the next processing cycle.

The RTI Interface stop function invokes the CSF
Exercise manger to resign from the federation and
optionally destroy it.

API Service Function
Start Initialization Services
Stop Termination Services
Send Send Data to RTI
Receive Process Incoming RTI data

CSF
Manager

Functions

Exercise federation creation / join / resign /
destroy

FOM maintain transient database of
object classes and their published
attributes and interactions

Interest subscription, database buffering of
object reflections and interaction
generations, process object and
interaction queries

Object publication, create objects, update
object attributes, send interaction

Process abstraction for HLA network event
processing

Figure 3 shows the communication between the
Gateway Manager and the RTI Interface.

It is significant to note that the specification of
class and attribute names and attribute and
parameter data types in the FOM is ingrained in
the Gateway source code. Changes to the FOM
would require recoding and recompiling the
Gateway. However, these changes were mitigated
by restricting affected code to the RTI Interface.
To a small extent the design of the RTI Interface
attempted to provide the flexibility to adapt to
changing FOMs. The attributes and parameters
used for exchanging data between the RTI
Interface and the CSF (or RTI) are defined as
“any” types or streams. These streams can store
any type of data and are tagged with the data type
they contain. The RTI Interface extends these
types by adding two additional tags, one to
identify the type used internally and another to
identify the type specified in the FOM. These
additional tags can be used to perform data
transformations when extracting data from a
stream or putting data into a stream. For
example, this technique allows a LOCATION
attribute to be defined as three floats internally
and three doubles in the FOM. Additional steps
could be made to allow class and attribute names
to be changed and initialized at startup via
configuration files.
2.2.3 Simulation Object Model
The HLA Specification defines the Simulation
Object Model (SOM) to prescribe the specific
types and format of data of an individual
simulation. (Object Model Template, 1996).
The BDS-D SOM documents the key
information about the BDS-D federate, including
its objects, attributes, associations, and
interactions. A copy of the BDS-D M1 SOM is
not included due to length restrictions.

The model used to begin work on a BDS-D
SOM was based on the information included in
SIMNET BBN Report No. 6787, which was
slightly out of date. Therefore, the first task was

to update it and expand it, modeling after the
HLA-PPF FOM which was then available.
SIMNET BBN Report No. 7627, a more recent
description of the SIMNET network and
protocols, was used, as well as header files from
the SIMNET application itself.

An initial version was developed which
conformed to the then most recent version of the
Object Model Template (OMT), version 0.2.
This version was as streamlined as possible, and
dealt with a single entity, the M1. This
minimal version was released April 23, 1996.

One of the issues that arose during the
development of the initial SOM was that of
whether the SOM should describe only those
classes, interactions, attributes that the Federate
could publish, or those that it could publish and
subscribe. Therefore, a second version of the
SOM was built which contained a column
“Publish/Subscribe”, and more material was
added to the SOM. This material was the
objects, attributes, and interactions to which the
BDS-D could only subscribe. This made for a
larger, more complete SOM.

An issue that arose at this point was that of
representing complex datatypes. A complex
datatypes table was added to the SOM, detailing
both complex datatypes and enumerations. The
inclusion of this table allowed for more
information to be included without cluttering the
attribute table, thus making it more readable.

Having the datatypes from both SIMNET and
HLA in a single SOM made the document
cluttered and difficult to follow. As a result, it
was decided to split the SOM into two parts, a
SIMNET SOM and an HLA SOM. These two
parts represent the two sides of our gateway, with
separate interfaces to the SIMNET and HLA
networks. Breaking up the SOM has several
advantages:
• multiple representations of datatypes are no
longer a problem
• Gateway functionality is more clearly
documented for the purposes of constructing a
FOM for a new federation out of multiple SOM’s
• it is possible to determine what parts of
SIMNET the gateway can support, so if the
gateway is ported to a different SIMNET
simulator, the needed changes to the gateway
will be apparent from looking at the SIMNET
SOM
• having the two SOM’s will aid in the
construction and maintenance of the gateway,
since they document what is expected from the

Gateway
Manager

RTI
Interface

SIMNET
Data

RTI
Data

Data Transformations

Attributes /
Interactions

Figure 3. Gateway Manager and RTI
Interface Communication

gateway in the way of conversions between
SIMNET and HLA.

2.3 Design Issues
Some of the various issues addressed during
Gateway development are discussed in this
section, including communications services, the
issue of dead reckoning, the DIS/SIMNET
“heartbeat” mechanism, and the use of object and
entity identifiers in the RTI and DIS.

2.3.1 Communication Services
There are significant differences between the
communication services in SIMNET, DIS, and
the RTI. SIMNET defines an association
protocol (AP) to provide communication services
underlying the simulation and data collection
protocols (Pope, 1991). For HLA applications,
communication is provided entirely by the RTI
using services defined in the Interface
Specification. Each protocol is used to provide
both reliable and unreliable services, although in
many cases the gateway’s translation requires a
compromise between incompatible requirements.
For example, some SIMNET PDUs may be
issued via a transaction service of the association
protocol. The RTI, however, may be operating
in a best effort mode using an unreliable
broadcast or multicast datagram service in which
no acknowledgment is possible. A similar
incompatibility will occur if the RTI is
providing reliable service for communications
utilizing datagram transmission in SIMNET or
DIS. Resolutions to issues such as these are
frequently deficient in some regard.

2.3.2 Dead Reckoning and Periodic Updates
Dead Reckoning and Periodic Updates are two
factors that significantly influenced gateway
design. Dead Reckoning is a technique that
reduces the frequency at which information must
be transmitted via the underlying network. In
addition to high fidelity dynamics information,
each simulator maintains a dead reckoning model
of itself and of all remote entities.

The DR model is used to extrapolate Time,
Space, and Position Information (TSPI) to depict
remote entities in the interval between updates.
A simulator compares its high fidelity
information with its DR model, and updates are
issued only if some threshold value has been
exceeded. Periodic updates, in contrast, often
result in the transmission of redundant
information. Regular updates provide several
positive benefits, however, such as mitigating
the impact of data loss in an unreliable network,
allowing entities to quickly capture the state of

an exercise regardless of the time of entry, and in
regulating the amount of error that can be
introduced by Dead Reckoning. The RTI is
expected to provide minimum rate and state
consistent categories of service to support these
considerations.

DIS entities issue an Entity State PDU based on
one of three conditions: a change in discrete
appearance attributes, a change in TSPI that
exceeds some DR threshold, or upon the
expiration of a timer. Similarly, remote entities
are considered to have timed out and are
removed if a prescribed time has elapsed without
receipt of an Entity State PDU. In most
categories of service, the RTI transmits only
changes in state information, and does not
transmit periodic updates. Accordingly, HLA
entities do not time out, and must be explicitly
removed. The gateway must ensure that periodic
updates are provided to the DIS network. Two
approaches are possible:

1. The gateway uses RTI services to query state
information on a regular basis.
2. The gateway maintains state information on
each HLA entity.

The first option was dismissed as requiring
substantial overhead given the frequency at which
the DIS network must be updated. The second
option requires that the gateway maintain a dead
reckoning model for each remote HLA entity to
which it is subscribed. Given a DR model for
each HLA entity, the gateway can determine with
minimal overhead when a DIS PDU should be
issued in the absence of an HLA update.

All attributes and interactions received from the
RTI result in the transmission of a DIS PDU.
Incoming DIS data, however, does not always
require the invocation of an RTI service. Only
changes in state information are required to be
transmitted to the RTI. In the case of a
quiescent DIS entity, no update is required. As
previously stated, there are three conditions that
require the issue of a DIS PDU. One of these
includes a special case that led to considerable
discussion. A moving DIS entity can
conceivably be within its DR thresholds at the
expiration of the heartbeat interval. At that time,
it will issue an Appearance PDU. The location
within the PDU will have changed. If this
information is not forwarded to the RTI, then
error will be introduced between the DIS and
RTI DR representations of the issuing entity.
This could possibly be addressed by maintaining
two DR models within the gateway. However,

an equally plausible resolution is to forward the
new TSPI to the RTI, while still filtering out
any unchanged data. This reduces the
computational overhead within the gateway and
should be a more scaleable solution.

2.3.3 Object ID versus Entity ID
DIS identified objects through a
Site/Application/Entity ID, each component
consisting of two octets. RTI objects are
assigned an object identifier of four octets. The
DIS ID has additional meaning beyond simple
object identification, providing logical
classifications based on geographic location (site)
and host workstation, if applicable. If this
additional information is not required, an RTI
object ID can be used to generate a unique DIS
ID. One approach is to use the high order octet
as the DIS site, the next octet as the host, and
the two low order octets as the entity ID. For
example, object ID 0x01234567 would map to
the unique DIS ID site 0x0001, host 0x0023,
entity 0x4567. The HLA-PPF FOM included a
Site/Host/Entity ID as a FOM attribute, in
addition to the RTI Object ID, and the owning
application explicitly assigned an Entity ID in
addition to the RTI-assigned Object ID.

2.3.4 Exercise ID versus Federation Name
An exercise ID and federation name are used in
DIS and by the RTI, respectively, as a distinct
exercise identifier. These parameters are
configured prior to run time within the gateway.
Currently, the Gateway supports a single DIS
exercise at one time. However, a Federation
Name to Exercise ID mapping could be
accomplished with minimal effort.

3.0 LEGACY INTEGRATION
One of the goals of IST’s participation in the
PPF experiment was to determine the feasibility
of integrating legacy systems into an HLA
federation using a gateway approach. We believe
that the success of the BDS-D HLA Gateway in
the PPF experiment demonstrates that feasibility,
at least for SIMNET and DIS simulations. A
range of SIMNET devices (M1 Simulator,
Stealth display, and Plan View Display, and PC-
based Computer Generated Forces) were active
parts of the PPF’s trials via the Gateway, and
their integration was achieved with no software
or hardware modifications to the SIMNET
devices at all. The DIS protocol translation
built into the Gateway makes similar results
achievable for DIS simulators.

Clearly, HLA integration using a Gateway adds
data communications latency to perform the

protocol translation; that is unavoidable.
However, the run-time performance of the BDS-D
HLA Gateway, while certainly needing attention,
was encouragingly good, especially given its
status as a prototype. The Gateway’s
performance is certain to improve, due both to
ongoing optimization within the Gateway and
planned performance-related enhancements to the
RTI.

4.0 CONCLUSIONS
The gateway has been successful in providing a
link between SIMNET applications and HLA-
based simulations exchanging data through the
Run Time Infrastructure. The use of a stand
alone internetworking device appears to be a
viable approach for cases in which re-engineering
costs to achieve HLA interoperability may be
prohibitive. We conclude that integrating legacy
systems, in particular SIMNET and DIS
simulations, into HLA federations with a
Gateway is a feasible, convenient, and cost
effective alternative.

Preliminary analysis of the data collected during
PPF experiments have shown end to end
latencies for RTI communication are significantly
higher than similar communication via standard
DIS implementations. For example, two
applications exchanging appearance updates on a
local Ethernet network under light load
frequently exhibit greater than 100 milliseconds
latency using RTI best effort (broadcast)
communication, whereas DIS packets typically
incur from 1-2 milliseconds under similar
conditions. The 100ms does not include
processing within the IST HLA Gateway, which
required an additional 1 to 20 milliseconds to
process each RTI message, depending on the
number and type of attributes. It is anticipated
that Gateway performance may be increased
through optimizations in the Gateway, CSF, and
RTI.

Detailed measurements of Gateway and RTI
performance are still underway at the time of this
report. Final results of the analysis of PPF
experiments are scheduled to be complete in
early September 1996.

5.0 REFERENCES
Bachinsky, S. T., Hancock, J. P., Hooks, M.
L., & Rybacki, R. M. (1996) Common
 Software Delivery 1: Status, Plan, Design, and
 API. TASC.

Harkrider, S. M. and Petty, M. D. (1996).
"High Level Architecture and the Platform Proto-
Federation", Proceedings of the 18th
Interservice/Industry Training Systems and
Education Conference, Orlando FL, December 3-
6 1996.

Pope, A. R. The SIMNET Network and
 Protocols. (1991) Version 6.6.1. BBN.

Smith, S. H., Karr, C. R., Petty, M. D.,
Franceschini, R. W., & Watkins, J. E. (1992)
“The IST Semi-Automated Forces Testbed.”
IST.

Department of Defense. (1996) “High Level
Architecture for Simulations, Object Model
Template Draft v0.2.“ DMSO.

Department of Defense. (1996) “High Level
Architecture for Simulations, Interface
Specification Draft v0.5.“ DMSO.

6.0 ABOUT THE AUTHORS
Andy Cox is an Associate Computer Scientist at
the Institute for Simulation and Training. He is
currently involved in various projects in the areas
of Distributed Interactive Simulation and the
High Level Architecture. Mr. Cox received a
Bachelor of Science degree in Computer Science
from the University of Central Florida and is
currently pursuing a graduate degree. His
background includes prior military service as an
Infantryman, Quartermaster Officer, and Military
Police Officer. His research interests are in
internetworking and distributed simulation.

Douglas D. Wood is a Research Computer
Scientist at the Institute for Simulation and
Training. Mr. Wood has performed research
primarily in the area of distributed simulation,
including HLA experiments, electronic warfare
protocols, and algorithms for computer generated
forces. He has also performed research in
simulation for emergency management training.
Mr. Wood received a M.S. and a B.S. in
Computer Science from the University of Central
Florida.

Mikel D. Petty is a Program Manager and Senior
Research Computer Scientist at the Institute for

Simulation and Training. He is currently
leading IST’s HLA BDS-D project; previously
he managed IST s Emergency Management and
Computer Generated Forces research. Mr. Petty
received a B.S. in Computer Science from the
California State University Sacramento and a
M.S. in Computer Science from the University
of Central Florida, and is a Ph.D. student in
Computer Science at UCF. His research
interests are in simulation and computational
geometry.

Kenneth A. Juge is a Research Assistant at the
Institute for Simulation and Training (IST),
working on the High Level Architecture BDS-D
project. Mr. Juge received a B.A. in Physics
from New College and a M.S. in Physics from
Michigan State University. He is currently a
Ph.D. student in Mechanical Engineering at the
University of Central Florida.

